29 research outputs found

    The SIB Swiss Institute of Bioinformatics' resources: focus on curated databases

    Get PDF
    The SIB Swiss Institute of Bioinformatics (www.isb-sib.ch) provides world-class bioinformatics databases, software tools, services and training to the international life science community in academia and industry. These solutions allow life scientists to turn the exponentially growing amount of data into knowledge. Here, we provide an overview of SIB's resources and competence areas, with a strong focus on curated databases and SIB's most popular and widely used resources. In particular, SIB's Bioinformatics resource portal ExPASy features over 150 resources, including UniProtKB/Swiss-Prot, ENZYME, PROSITE, neXtProt, STRING, UniCarbKB, SugarBindDB, SwissRegulon, EPD, arrayMap, Bgee, SWISS-MODEL Repository, OMA, OrthoDB and other databases, which are briefly described in this article

    Nanoparticles of molecule-based conductors

    No full text
    1144-0546State of the art molecule-based conductors that have been isolated as nanoparticles are reviewed. Research efforts in this field is justified by their insolubility and low vapour pressure, making their integration into electronic devices difficult. Their availability as nanoparticles would allow researchers to study their properties at the nanoscale and as stable dispersions, offering new opportunities for processing. Molecular conductors and superconductors that have been isolated as nanoparticles are: TTF[middle dot]TCNQ, TTF[Ni(dmit)2]2, TTFCl0.77 and TTFBr0.59, (BEDT-TTF)Cl0.66 and (BEDT-TTF)2Br, (TMTSF)2ClO4 and (TMTSF)2PF6. Nanoparticle formation and shape depend on the stabilizing agent used for controlling the growth: ionic liquids, long-chain ammonium salts or neutral liquid polymers. The conductivities of the nanoparticle powders are reported

    The RFamide neuropeptide 26RFa and its role in the control of neuroendocrine functions

    No full text
    International audienceIdentification of novel neuropeptides and their cognate G protein-coupled receptors is essential for a better understanding of neuroendocrine regulations. The RFamide peptides represent a family of regulatory peptides that all possess the Arg-Phe-NH2 motif at their C-terminus. In mammals, seven RFamide peptides encoded by five distinct genes have been characterized. The present review focuses on 26RFa (or QRFP) which is the latest member identified in this family. 26RFa is present in all vertebrate phyla and its C-terminal domain (KGGFXFRF-NH2), which is responsible for its biological activity, has been fully conserved during evolution. 26RFa is the cognate ligand of the orphan G protein-coupled receptor GPR103 that is also present from fish to human. In all vertebrate species studied so far, 26RFa-expressing neurons show a discrete localization in the hypothalamus, suggesting important neuroendocrine activities for this RFamide peptide. Indeed, 26RFa plays a crucial role in the control of feeding behavior in mammals, birds and fish. In addition, 26RFa up-regulates the gonadotropic axis in mammals and fish. Finally, evidence that the 26RFa/GPR103 system regulates steroidogenesis, bone formation, nociceptive transmission and arterial blood pressure has also been reported. Thus, 26RFa appears to act as a key neuropeptide in vertebrates controlling vital neuroendocrine functions. The pathophysiological implication of the 26RFa/GPR103 system in human is totally unknown and some fields of investigation are proposed

    Inter-kingdom effect on epithelial cells of the N-Acyl homoserine lactone 3-oxo-C12:2, a major quorum-sensing molecule from gut microbiota.

    No full text
    BACKGROUND AND AIMS:N-acyl homoserine lactones (AHLs), which are autoinducer quorum-sensing molecules involved in the bacterial communication network, also interact with eukaryotic cells. Searching for these molecules in the context of inflammatory bowel disease (IBD) is appealing. The aims of our study were to look for AHL molecules in faecal samples from healthy subjects (HS) and IBD patients to correlate AHL profiles with the microbiome and investigate the effect of AHLs of interest on epithelial cells. METHODS:Using mass spectrometry, we characterised AHL profiles in faecal samples from HS (n = 26) and IBD patients in remission (n = 24) and in flare (n = 25) and correlated the presence of AHLs of interest with gut microbiota composition obtained by real-time qPCR and 16S sequencing. We synthesised AHLs of interest to test the inflammatory response after IL1ÎČ stimulation and paracellular permeability on Caco-2 cells. RESULTS:We observed 14 different AHLs, among which one was prominent. This AHL corresponded to 3-oxo-C12:2 and was found significantly less frequently in IBD patients in flare (16%) and in remission (37.5%) versus HS (65.4%) (p = 0.001). The presence of 3-oxo-C12:2 was associated with significantly higher counts of Firmicutes, especially Faecalbacterium prausnitzii, and lower counts of Escherichia coli. In vitro, 3-oxo-C12:2 exerted an anti-inflammatory effect on Caco-2 cells. Interestingly, although 3-oxo-C12, the well-known AHL from Pseudomonas aeruginosa, increased paracellular permeability, 3-oxo-C12:2 did not. CONCLUSIONS:We identified AHLs in the human gut microbiota and discovered a new and prominent AHL, 3-oxo-C12:2, which correlates with normobiosis and exerts a protective effect on gut epithelial cells

    Investigating the Dynamics of Fission at High Excitation Energy in Reactions Induced by Relativistic Protons and Deuterons on Lead

    No full text
    Several observables such us total fission cross sections, pre-saddle neutron and gamma emission or the measurement of the fission time using crystal blocking techniques show clear indications for a delay of fission at high excitation energies when compared to other de-excitation channels, namely particle evaporation . This delay is explained as the manifestation of transient effects produced by the coupling between intrinsic and collective degrees of freedom in fission. This coupling can be macroscopically understood as a dissipative process. Moreover, the investigation of proton induced fission on lead is relevant for the radiological characterization of spallation targets. In this work we will present measurements of total fission cross sections and charge distributions of the fission fragments produced in proton and deuteron on lead reactions at relativistic energies. The experiment was performed in inverse kinematics at GSI Darmstadt. Beams of lead ions were accelerated by the SIS18 synchrotron at 500 A MeV impinging then onto a liquid hydrogen/deuterium target. Projectile reaction residues, in particular fission fragments flying forward, were identified using a set of plastic scintillators and ionization chambers. Measured data were used to benchmark model calculations describing residual nuclei production in spallation reactions. In particular we used several model calculations to prove the sensitivity of the width of the charge distributions of the fission fragments to the temperature reached by the fissioning system at saddle. The deduced temperatures are clearly influenced by transient effects which cool down the fissioning nuclei from ground to saddle

    Proteomics Standards Initiative Extended FASTA Format

    No full text
    Mass-spectrometry-based proteomics enables the high-throughput identification and quantification of proteins, including sequence variants and post-translational modifications (PTMs) in biological samples. However, most workflows require that such variations be included in the search space used to analyze the data, and doing so remains challenging with most analysis tools. In order to facilitate the search for known sequence variants and PTMs, the Proteomics Standards Initiative (PSI) has designed and implemented the PSI extended FASTA format (PEFF). PEFF is based on the very popular FASTA format but adds a uniform mechanism for encoding substantially more metadata about the sequence collection as well as individual entries, including support for encoding known sequence variants, PTMs, and proteoforms. The format is very nearly backward compatible, and as such, existing FASTA parsers will require little or no changes to be able to read PEFF files as FASTA files, although without supporting any of the extra capabilities of PEFF. PEFF is defined by a full specification document, controlled vocabulary terms, a set of example files, software libraries, and a file validator. Popular software and resources are starting to support PEFF, including the sequence search engine Comet and the knowledge bases neXtProt and UniProtKB. Widespread implementation of PEFF is expected to further enable proteogenomics and top-down proteomics applications by providing a standardized mechanism for encoding protein sequences and their known variations. All the related documentation, including the detailed file format specification and example files, are available at http://www.psidev.info/peff
    corecore